Rate acceleration of phosphoric acid-catalyzed Diels-Alder reaction by internal hydrogen-bonding of adjacent hydroxy group

Ryukichi Takagi*, Asako Kondo, Katsuo Ohkata
Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
Received 16 August 2007; accepted 22 August 2007
Available online 25 August 2007

Abstract

The Brønsted acid-catalyzed Diels-Alder reaction was examined. Phosphoric acids were effective Brønsted acids for the Diels-Alder reaction of cyclohexadienones and activated by the internal hydrogen-bonding of the adjacent hydroxy group. © 2007 Elsevier B.V. All rights reserved.

Keywords: Diels-Alder reaction; Brønsted acid catalyst; Rate acceleration

1. Introduction

Brønsted acids, such as diol, urea, thiourea, guanidine, and phosphoric acid, have been recently received much attention as organocatalysts [1]. Chiral Brønsted acids have been applied to a wide range of reactions [2-9]. These reports suggest that a suitable nucleophilic substrate, such as imine, is necessary for the effective rate acceleration of the reaction by a Brønsted acid. Because of low nucleophilicity and/or polymerization of dienophiles such as α, β-unsaturated aldehydes and ketones, the Brønsted acid-catalyzed Diels-Alder reaction has not received much attention for a long time [10]. Rawal and co-workers have developed reactive aminosiloxydiene [11] and reported the enantioselective TADDOL-catalyzed DielsAlder reaction [12] of methacrolein with dienes. Nakashima and Yamamoto have designed a highly reactive and acidic chiral Brønsted acid, chiral N-triflyl phosphoramide, and developed a highly enantioselective Diels-Alder reaction of α, β-unsaturated ketone with silyloxydiene using the chiral phosphoramide [13].

We have reported π-facially selective Diels-Alder reactions of cross-conjugated cyclohexadienones with cyclopentadiene [14]. The Diels-Alder reaction was accelerated in $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$, although the reaction rate was slow in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{CH}_{3} \mathrm{CN}$. We considered that the rate acceleration was attributed to

[^0]hydrogen-bonding between cross-conjugated cyclohexadienone and $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ and examined the Diels-Alder reaction catalyzed by some Brønsted acids. We found rate acceleration of phosphoric acid-catalyzed Diels-Alder reaction by internal hydrogen-bonding of the adjacent hydroxy group.

2. Experimental

2.1. General

All reactions involving air- and moisture-sensitive reagent were carried out under N_{2}. Tetrahydrofuran (THF) was distilled after refluxing over Na-benzophenone before use. Merck silica gel $60 \mathrm{~F}_{254}$ TLC aluminum sheets were used for routine monitoring of reaction. Column chromatography was performed on Merck silica gel 60 (70-230 mesh, ASTM). Merck silica gel $60 \mathrm{~F}_{254}$ was used for preparative thin-layer chromatography. Os IC-I was purchased from Wako Pure Chemical Industries, Ltd.

Melting points were taken on a Yanagimoto melting-point apparatus. NMR spectra were recorded on a JEOL JNM-LA500 instrument. Internal references for ${ }^{1} \mathrm{H}$ NMR spectra were $\mathrm{Me}_{4} \mathrm{Si}$ (TMS) for $\mathrm{CDCl}_{3}(0.0 \mathrm{ppm})$ and $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(7.55 \mathrm{ppm})$. Chemical shifts for ${ }^{13} \mathrm{C}$ NMR spectra were referenced to CDCl_{3} (77.0 ppm) and $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(135.5 \mathrm{ppm})$. MS were recorded on a JEOL JMS-SX102A instrument under electron ionization (EI) conditions $(70 \mathrm{eV})$. Elemental analyses were carried out on a Perkin-Elmer 2400II analyzer.

2.2. General procedure for the Diels-Alder reaction

Freshly distilled cyclopentadiene (10 eq) and additive were added to a 0.3 M solution of dienophile in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature. The reaction mixture was shielded from the light and stirred at room temperature. After 48 h , the solvent was removed in vacuo. The residue was purified by preparative TLC (silica gel, hexane/EtOAc 2:1).

2.3. Preparation of compound (4)

Lithium ($1.00 \mathrm{~g}, 144 \mathrm{mmol}$) was added in small portions at $-78^{\circ} \mathrm{C}$ to a solution of benzoic acid ($5.06 \mathrm{~g}, 41.9 \mathrm{mmol}$) in THF (40 ml) and liquid ammonia (300 ml) until a blue color persisted. After stirred for 30 min at $-78^{\circ} \mathrm{C}, 2$-(2-bromoethyl)-1,3-dioxolane ($12.4 \mathrm{ml}, 106 \mathrm{mmol}$) was slowly added. The resulting yellow solution was stirred for 3 h at $-78^{\circ} \mathrm{C}$. After addition of $\mathrm{NH}_{4} \mathrm{Cl}(6.74 \mathrm{~g}, 126 \mathrm{mmol})$, the mixture was warmed slowly to room temperature while ammonia was removed. The residue was dissolved in water $(90 \mathrm{ml})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. To the aqueous layer at $0^{\circ} \mathrm{C}$ was added conc. HCl to give $\mathrm{pH} 1-2$. The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. After evaporation, 1,4-diene was obtained $(9.48 \mathrm{~g})$ as a yellow oil. The crude product was used for the next reaction without further purification: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.96-5.90(\mathrm{~m}, 2 \mathrm{H}), 5.74-5.69(\mathrm{~m}, 2 \mathrm{H})$, $4.85(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.80(\mathrm{~m}, 2 \mathrm{H})$, $2.72-2.57(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.59(\mathrm{~m}, 2 \mathrm{H})$.

To a mixture of the 1,4 -diene $(9.48 \mathrm{~g}, 42.3 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(17.5 \mathrm{~g}, 127 \mathrm{mmol})$ in DMF $(140 \mathrm{ml})$ was added MeI $(13.2 \mathrm{ml}$, 212 mmol) at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 3 h at room temperature. The reaction mixture was poured into water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic phase was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by column chromatography (silica gel, hexane/EtOAc 4:1) to give methyl ester (8.77 g , 89% from benzoic acid) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.93-5.88(\mathrm{~m}, 2 \mathrm{H}), 5.72(\mathrm{dt}, J=10.4,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.84$ $(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.69$ $(\mathrm{s}, 3 \mathrm{H}), 2.70-2.57(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.57(\mathrm{~m}$, 2 H); HR-EIMS m/z: calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4}\left[\mathrm{M}^{+}\right]$238.1205, Found 238.1211.

To a suspension of $\mathrm{CrO}_{3}(158 \mathrm{mg}, 1.04 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 3,5-dimethylpyrazole (DMP) $(152 \mathrm{mg}, 1.58 \mathrm{mmol})$ at $-20^{\circ} \mathrm{C}$. After stirring for 20 min , a solution of the methyl ester ($74.8 \mathrm{mg}, 314 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{ml}$) was added to the reaction mixture. The reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 1 h , diluted with $\mathrm{Et}_{2} \mathrm{O}$, passed through a pad of Celite. The filtrate was washed with sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by column chromatography (silica gel, hexane/EtOAc 2:1) to give $4(44.1 \mathrm{mg}, 56 \%)$ as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.03(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.36(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.84(\mathrm{t}$, $J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.88-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.76$ ($\mathrm{s}, 3 \mathrm{H}$), 2.16-2.10 (m, 2H), $1.56(\mathrm{dt}, J=12.5,4.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.8,170.5$, 147.5 (x2), 130.4 (x2),
103.1, 64.9 (x2), 53.0, 51.5, 31.7, 28.2; HR-EIMS m/z: calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{5}\left[\mathrm{M}^{+}\right]$252.0998. Found 252.0991. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{5}$: C, 61.90; H, 6.39. Found C, 62.08; H, 6.39.

2.4. Compound (5)

${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.91(\mathrm{dd}, J=10.4,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.93(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{dd}, J=5.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.80$ (dd, $J=5.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.90(\mathrm{~m}, 2 \mathrm{H})$, $3.83-3.79(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H}), 3.07$ (dd, $J=8.8$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~m}, 1 \mathrm{H}), 2.71$ (ddd, $J=8.5,3.1,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.08 (td, $J=12.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{td}, J=12.8,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.66-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{dt}, J=7.9,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.34(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 200.4, 174.2, 148.7, 135.6, 134.0, 130.5, 103.6, 64.9 (x2), 52.1, 50.6, 49.5, 48.6, 48.0, 47.8, 45.6, 39.8, 29.0; HR-EIMS m / z : calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{5}\left[\mathrm{M}^{+}\right]$318.1467. Found 318.1466; Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{5}: \mathrm{C}, 67.91 ; \mathrm{H}, 6.97$. Found C, $67.65 ; \mathrm{H}, 7.20$.

2.5. Preparation of compound (6)

To a stirred solution of LDA, prepared from $i-\mathrm{Pr}_{2} \mathrm{NH}(0.66 \mathrm{ml}$, $5.05 \mathrm{mmol})$ and $n-\mathrm{BuLi}(1.10 \mathrm{M}$ in THF, $3.40 \mathrm{ml}, 3.74 \mathrm{mmol})$ in THF $(1.0 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$, was added a solution of $5(795 \mathrm{mg}$, 2.50 mmol) in THF (8.0 ml) at $-78^{\circ} \mathrm{C}$. After 20 min , MeI $(1.50 \mathrm{ml}, 24.1 \mathrm{mmol})$ was added and the mixture was stirred overnight at -78 to $-50^{\circ} \mathrm{C}$. The reaction mixture was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The resulting residue was purified by column chromatography (silica gel, hexane/EtOAc $4: 1$) to give methyl derivative ($450.5 \mathrm{mg}, 54 \%$) as a white solid, and recovered 5 ($162.4 \mathrm{mg}, 20 \%$): m.p. (benzene) $111-113{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.92(\mathrm{dd}, J=10.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.90$ (dd, $J=5.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.82$ (dd, $J=5.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.89(\mathrm{~m}$, 2 H), 3.83-3.78 (m, 2H), $3.81(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{bs}, 1 \mathrm{H}), 2.73$ (bs, $1 \mathrm{H}), 2.42(\mathrm{dd}, J=2.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{td}, J=12.8,4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.71-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H})$, $1.50-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{dt}, J=8.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.5,174.0,148.2,136.7,134.6,130.7$, 103.9, 65.1 (x2), 57.3, 54.0, 52.3, 51.2, 49.8, 48.8, 47.8, 41.2, 29.6, 26.9; HR-EIMS m / z : calcd. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{5}\left[\mathrm{M}^{+}\right] 332.1624$. Found 332.1638; Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{5}$: C, 68.66; H, 7.28. Found C, 68.58; H, 7.40.

To a solution of the methyl derivative ($30.6 \mathrm{mg}, 92.1 \mu \mathrm{~mol}$) in $\mathrm{CH}_{3} \mathrm{CN} /$ acetone $/ \mathrm{H}_{2} \mathrm{O}(1: 1: 1,0.3 \mathrm{ml})$ was added N -methylmorpholine- N-oxide (NMO) $(16.9 \mathrm{mg}, 144 \mu \mathrm{~mol})$ and Os IC-I (abt. $7 \%, 12.7 \mathrm{mg}, 4.66 \mu \mathrm{~mol}$) at $0^{\circ} \mathrm{C}$. After stirring for 2 days at $0^{\circ} \mathrm{C}$ to room temperature, the reaction mixture was filtered. The filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified with column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 30: 1$) to give diol ($32.1 \mathrm{mg}, 95 \%$) as a white solid: m.p. (benzene) $153-155{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right)$ $\delta 7.43$ (dd, $J=10.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.79$ $(\mathrm{t}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.84-3.79(\mathrm{~m}, 2 \mathrm{H}), 3.70-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.47$
(bs, 1H), 2.41-2.34 (m, 2H), 2.27-2.23 (m, 2H), 1.85-1.73 (m, $2 \mathrm{H}), 1.69-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) $\delta 202.9,173.7,150.2,128.7$, $103.8,70.1,69.0,65.1,65.0,59.7,53.6,52.1,50.7,48.8,48.3$, 41.6, 31.6, 29.9, 27.0; Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{7}: \mathrm{C}, 62.28$; H,7.15. Found C, 62.17; H, 6.89.

To a solution of the diol $(105 \mathrm{mg}, 0.29 \mathrm{mmol})$ in THF $(1.0 \mathrm{ml})$ and acetone (1.5 ml) was added acetone dimethyl acetal ($88 \mu \mathrm{l}$, $0.72 \mathrm{mmol})$ and $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(1.21 \mathrm{mg}, 0.58 \mu \mathrm{~mol})$ at room temperature. The resulting mixture was stirred for 16 h and quenched with water. The mixture was extracted with EtOAc. The combined organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure. The residue was purified by preparative TLC (silica gel, hexane/EtOAc $2: 1 \times 3$) to give acetal ($103 \mathrm{mg}, 88 \%$) as a white solid: m.p. (benzene) $166-158{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{dd}, J=10.4$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{t}, J=4.6,1 \mathrm{H})$, $4.14(\mathrm{dd}, J=5.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.89(\mathrm{~m}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$, 3.81-3.79 (m, 2H), 2.32 (bs, 1H), 2.22 (bs, 2H), 2.18-2.13 (m, $1 \mathrm{H}), 1.82(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.45$ (m, 1H), 1.45-1.41 (m, 1H), $1.40(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.18$ ($\mathrm{s}, 3 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.4,173.1,149.6$, 128.6, 108.7, 103.4, 78.1, 77,2, 64.9 (x2), 55.4, 52.4, 52.1, 48.2, 47.3, 46.6, 41.0, 30.8, 29.4, 26.7, 25.2, 24.0; HR-EIMS m / z : calcd. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{7}\left[\mathrm{M}^{+}\right]$406.1992. Found 406.1983; Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{7}$: C, 65.01; H, 7.44. Found C, 64.99; H, 7.54.
$\mathrm{NaBH}_{4}(85.3 \mathrm{mg}, 2.25 \mathrm{mmol})$ was added to a solution of the acetal $(91.6 \mathrm{mg}, 0.23 \mathrm{mmol})$ in $\mathrm{MeOH}(2.25 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 20 min . After quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$, the mixture was extracted with EtOAc. The combined organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated. The crude product was purified by column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1$) to give $6(84.0 \mathrm{mg}, 91 \%)$ as a white solid: m.p. (benzene) $215-218^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.23$ (ddd, $J=10.4,3.4,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.81(\mathrm{dd}, J=10.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ (bs, 1 H$), 4.26(\mathrm{dd}, J=5.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.95-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.84-3.79(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.06-2.05$ $(\mathrm{m}, 3 \mathrm{H}), 1.97(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{td}, J=13.1,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.78(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.36(\mathrm{~m}, 2 \mathrm{H})$, $1.39(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 174.4,132.3,128.1,108.1,103.9,78.5,77.5,72.6,64.9$ (x2), 52.8, 52.1, 49.7, 48.9, 45.9, 44.0, 33.1, 32.2, 30.8, 30.1, 25.2, 24.2; HR-EIMS m/z: calcd. for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{7}\left[\mathrm{M}^{+}\right] 408.2148$. Found 408.2128; Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{7}$: C, 64.69; H, 7.90. Found C, 64.77; H, 7.70.

2.6. Compound (10)

a colorless yellow solid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.81$ (dd, $J=5.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$ (dd, $J=5.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.66$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{bs}, 1 \mathrm{H}), 4.08$ (bs, 1H), 4.03 (bs, 1H), 3.65 (t, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$), $2.74-2.61$ (m, $2 \mathrm{H}), 2.26(\mathrm{dt}, J=7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{dt}, J=7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.88-1.74(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.2,152.0$, $142.7,142.5,128.0,126.2,126.0,112.9,69.2,62.3,48.5,46.0$,
34.5, 28.5; HR-EIMS m / z : calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]$216.1150. Found 216.1148; Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 77.75; H, 7.46. Found C, 77.49; H, 7.76.

2.7. X-Ray structure determination

A crystal suitable for X-ray structure determination was mount on a Mac science DIP2030 imaging plate equipped with graphite-monochromated Mo Ka radiation ($\lambda=0.71069 \AA$). Unit-cell parameters were determined by autoindexing several images in each data set separately with the DENZO program [15]. For each data set, rotation images were collected in 3° increments with a total rotation of 180° about φ (60 frames). Data were processed by using the SCALEPACK program [15]. The structure were solved by a direct method and refined by fullmatrix least-squares methods with the TeXsan (Rigaku) program [16].

3. Results and discussion

The Diels-Alder reaction of cyclohexadienone $\mathbf{1}$ with cyclopentadiene in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was selected as a probe for the Brønsted acid-catalyzed reaction (Scheme 1). Because the Diels-Alder reaction of $\mathbf{1}$ with cyclopentadiene in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature gave only trace amount of cycloadducts 2 and $\mathbf{3}$ and the uncatalyzed reaction can be ignored [14b]. First, the Diels-Alder reaction in the presence of $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ (10 eq), 3, 3^{\prime}-bis(trifluoromethyl)urea (0.2 eq), and $3,3^{\prime}$-bis(trifluoromethyl)thiourea (0.2 eq) as a Brønsted acid was examined. However, they were not efficient for catalyst [17].

The Diels-Alder reaction of $\mathbf{1}$ with cyclopentadiene in the presence of phenols (1.0 eq) as a Brønsted acid was examined (Table 1). Phenols accelerated the Diels-Alder reaction more than $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$. According to the acidity of the phenols, the conversion yield was improved. Treatment of $\mathbf{1}$ with cyclopentadiene in the presence of $p-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}$ (1.0 eq) gave the cycloadducts 2 and 3 (37% conversion yield). When Phenol (10 eq) was used as a Brønsted acid, the conversion yield of $\mathbf{1}$ was 80%. These results indicated that the acidity of Brønsted acid was important for rate acceleration of the Diels-Alder reaction.

Based on the rate acceleration by phenols, we examined the Diels-Alder reaction in the presence of biphenols (1.0 eq) (Table 2). The Diels-Alder reaction in the presence of biphenol was accelerated compared with phenol (Table 2, entry 1). However, the mono-methyl ether of biphenol did not act as the catalyst of the Diels-Alder reaction (Table 2, entry 2). The inactivation of the mono-methyl ether will be caused by the intramolecular hydrogen-bonding between the hydroxy group

[^1]Table 1
Diels-Alder reaction of $\mathbf{1}$ with cyclopentadiene in the presence of phenols p-R$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}$ (1.0 eq)

Entry	Phenol $(R=)$	Conversion $(\%)^{\mathrm{a}}$	$\mathbf{2 : 3}$
1	-	4	$90: 10$
2	OMe	11	$95: 5$
$3^{\text {c }}$	H	19	$93: 7$
4	Cl	21	$95: 5$
5	CF_{3}	26	$96: 4$
6	CN_{3}	28	$95: 5$
7	NO_{2}	37	$94: 6$

The reaction was carried out at room temperature for 48 h .
${ }^{\text {a }}$ The yield was determined by ${ }^{1} \mathrm{H}$ NMR of the crude product.
${ }^{\mathrm{b}}$ The ratio was determined by ${ }^{1} \mathrm{H}$ NMR of the crude product.
${ }^{c}$ When phenol (10 eq) was used as an additive, the adducts $\mathbf{2}$ and $\mathbf{3}$ were obtained in 80% conversion yield $(2: 3=94: 6)$.

Table 2
Diels-Alder reaction of $\mathbf{1}$ with cyclopentadiene in the presence of biphenols (1.0 eq)
Entry

The reaction was carried out at room temperature for 48 h .
${ }^{\text {a }}$ The yield was determined by ${ }^{1} \mathrm{H}$ NMR of the crude product.
${ }^{\mathrm{b}}$ The ratio was determined by ${ }^{1} \mathrm{H}$ NMR of the crude product.
and the oxygen of the ether. In the phenol-catalyzed DielsAlder reaction of cyclohexadiene $\mathbf{1}$, the π-face selectivity was increased.

Next, the Diels-Alder reaction of $\mathbf{1}$ with cyclopentadiene in the presence of acids are summarized in Table 3. Acetic acid (1.0 eq) accelerated Diels-Alder reaction as much as PhOH . (Table 3, entry 1). When phosphoric acid was used as a Brønsted acid, the Diels-Alder reaction was efficiently accelerated even if the amount of 0.1 eq (Table 3, entry 2). The addition of more acidic $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$ (0.1 eq) was also examined (Table 3, entries 3 and 4). When $\mathrm{H}_{2} \mathrm{SO}_{4}$ was used as a

Table 3
Diels-Alder reaction of $\mathbf{1}$ with cyclopentadiene in the presence of acids

Entry	Acid	${\text { Conversion }(\%)^{\mathrm{a}}}^{2: \mathbf{3}^{\text {b }}}$	
1	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(1.0 \mathrm{eq})$	11	$94: 6$
2	$\mathrm{H}_{3} \mathrm{PO}_{4}(0.1 \mathrm{eq})$	>99	$96: 4$
3	$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(0.1 \mathrm{eq})$	32	$97: 3$
4	$\mathrm{H}_{2} \mathrm{SO}_{4}(0.1 \mathrm{eq})$	96^{c}	$95: 5$

The reaction was carried out at room temperature for 48 h .
${ }^{\text {a }}$ The yield was determined by ${ }^{1} \mathrm{H}$ NMR of the crude product.
${ }^{\text {b }}$ The ratio was determined by ${ }^{1} \mathrm{H}$ NMR of the crude product.
${ }^{c}$ The isolated yield was 75%.

Table 4
Diels-Alder reaction of $\mathbf{1}$ with cyclopentadiene in the presence of phosphoric acids (0.1 eq)

Entry	Phosphoric acid	Conversion (\%) $^{\text {a }}$	$\mathbf{2 : 3}^{\text {b }}$
1	H 3 PO 4	96	$96: 4$
2	$(\mathrm{PhO}) \mathrm{P}(\mathrm{O})(\mathrm{OH})_{2}$	28	$97: 3$
3	$(\mathrm{PhO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{OH}$	14	$93: 7$

The reaction was carried out at room temperature for 15 min .
${ }^{\text {a }}$ The yield was determined by ${ }^{1} \mathrm{H}$ NMR of the crude product.
${ }^{\mathrm{b}}$ The ratio was determined by ${ }^{1} \mathrm{H}$ NMR of the crude product.

Table 5
Diels-Alder reaction of $\mathbf{4}$ with cyclopentadiene in the presence of phosphoric acid (0.1 eq)

Entry	Phosphoric acid	Yield (\%)
1	-	No reaction
2	$\mathrm{H}_{3} \mathrm{PO}_{4}$	41
3	$(\mathrm{PhO}) \mathrm{P}(\mathrm{O})(\mathrm{OH})_{2}$	91
4	$(\mathrm{PhO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{OH}$	79
The reaction was carried out at room temperature for 48 h.$$		
a Isolated yield.		

Brønsted acid, cyclohexadienone $\mathbf{1}$ and/or cycloadducts $\mathbf{2}$ and $\mathbf{3}$ were decomposed by the acid and the isolated yield of the products was decreased. The low activity of AcOH and $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ may be attributed to the dimerization in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

The acceleration effect by the addition of phosphoric acids $\mathrm{H}_{3} \mathrm{PO}_{4}$, $(\mathrm{PhO}) \mathrm{P}(\mathrm{O})(\mathrm{OH})_{2}$, and $(\mathrm{PhO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{OH}$ was compared (Table 4). When the reaction mixture was stirred for 24 h , cyclohexadienone 1 was quantitatively converted to the product irrespective of the phosphoric acid used. To compare the ability of the phosphoric acids, the reaction was quenched at 15 min . The most effective Brønsted acid was $\mathrm{H}_{3} \mathrm{PO}_{4}$ and the order of the rate acceleration profile was in the order $\mathrm{H}_{3} \mathrm{PO}_{4} \gg(\mathrm{PhO}) \mathrm{P}(\mathrm{O})(\mathrm{OH})_{2}>(\mathrm{PhO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{OH}$. As same as the phenol-catalyzed Diels-Alder reaction, the π-face selectivity was increased.

The phosphoric acid-catalyzed Diels-Alder reaction of 4, bearing an acetal group, with cyclopentadiene was examined

5

Fig. 1. NOE experiments on 5.

Scheme 2. Conversion of 5 to $\mathbf{6}$.
(Table 5). Cyclohexadienone 4 was treated with cyclopentadiene in the presence of phosphoric acid at room temperature. After 48 h , cyclohexadienone 4 was consumed and cycloadduct 5 was obtained as a single isomer. The stereochemistry of 5 was determined by ${ }^{1} \mathrm{H}$ NMR dif-NOE experiments (Fig. 1) and confirmed by X-ray structural analysis [18] of $\mathbf{6}$, which was generated from 5 over 4 steps (Scheme 2 and Fig. 2). Cyclohexadienone 4 and/or cycloadduct 5 were decomposed by $\mathrm{H}_{3} \mathrm{PO}_{4}$ and $(\mathrm{PhO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{OH}$ and the isolated yield of 5 was decreased (41% and 79%, respectively, Table 5, entries 2 and 4). When $(\mathrm{PhO}) \mathrm{P}(\mathrm{O})(\mathrm{OH})_{2}$ was used as a Brønsted acid, cycloadduct 5 was obtained in 91% isolated yield (Table 2, entry 3).

Cyclohexadienone 7, bearing the spiro-ether, was used as a dienophile of the phosphoric acid-catalyzed Diels-Alder reaction (Table 6). When cyclohexadienone 7 was treated with cyclopentadiene in the presence of $(\mathrm{PhO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{OH}$ for 48 h , a mixture of diastereomers 8 and 9 was obtained along with the by-product 10 , which was generated by $(\mathrm{PhO})_{2} \mathrm{P}(\mathrm{O})_{2} \mathrm{OH}$ catalyzed tautomerization of $\mathbf{8}$ and/or 9 . (Table 6, entry 2). The $(\mathrm{PhO})_{2} \mathrm{P}(\mathrm{O})_{2} \mathrm{OH}$-catalyzed tautomerization was prevented by the addition of PhNHMe (Table 6, entry 3) [19].

The phosphoric acid-catalyzed Diels-Alder reaction of other dienophiles was also examined (Tables 7 and 8). The Diels-Alder reaction of cinnamaladehyde [20] was three to six times accelerated by the phosphoric acids (Table 7). The most efficient Brønsted acid was $(\mathrm{PhO}) \mathrm{P}(\mathrm{O})(\mathrm{OH})_{2}$, not $\mathrm{H}_{3} \mathrm{PO}_{4}$. The endoselectivity was increased in the phosphoric acid-catalyzed DielsAlder reaction. 2,6-Dimethylbenzoquinone [21] readily reacted with cyclopentadiene without Brønsted acid at room temperature and the phosphoric acid-catalyzed Diels-Alder reaction was

Fig. 2. ORTEP drawing of 6 showing the thermal ellipsoids at the 30% probability level.
quenched at 2 h (Table 8). The Diels-Alder reaction was accelerated in the order $(\mathrm{PhO}) \mathrm{P}(\mathrm{O})(\mathrm{OH})_{2}>\mathrm{H}_{3} \mathrm{PO}_{4}>(\mathrm{PhO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{OH}$, which indicated that the catalytic ability of $\mathrm{H}_{3} \mathrm{PO}_{4}$ depends on the dienophile. This may be attributed to the association of phos-

Table 6
The $(\mathrm{PhO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{OH}$-catalyzed Diels-Alder reaction of 7 with cyclopentadiene

Entry	Additive	Time (h)	${\text { Conversion }(\%)^{\mathrm{a}}}^{\mathbf{8 : 9}}$	
1	-	24	14	$96: 4$
2	$(\mathrm{PhO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{OH}(0.1 \mathrm{eq})$	48	51^{b}	
3	$(\mathrm{PhO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{OH}(0.1 \mathrm{eq}) \mathrm{PhNHMe}(0.1 \mathrm{eq})$	24	61	$>99:<1$

[^2]Table 7
Diels-Alder reaction of cinnamaldehyde with cyclopentadiene in the presence of phosphoric acid

Entry	Phosphoric acid	Conversion (\%) ${ }^{\text {a }}$	endo:exo ${ }^{\text {b }}$
1	-	5	52:48
2	$\mathrm{H}_{3} \mathrm{PO}_{4}$	17	77:23
3	$(\mathrm{PhO}) \mathrm{P}(\mathrm{O})(\mathrm{OH})_{2}$	33	82:18
4	$(\mathrm{PhO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{OH}$	25	82:18

The reaction was carried out at room temperature for 48 h .
${ }^{\text {a }}$ The yield was determined by ${ }^{1} \mathrm{H}$ NMR of the crude product.
${ }^{\mathrm{b}}$ The ratio was determined by ${ }^{1} \mathrm{H}$ NMR of the crude product.

Table 8
Diels-Alder reaction of 2,6-dimethylbenzoquinone with cyclopentadiene in the presence of phosphoric acid

Entry	Phosphoric acid	Conversion (\%) ${ }^{\text {a }}$
1	-	19
2	$\mathrm{H}_{3} \mathrm{PO}_{4}$	40
3	$(\mathrm{PhO}) \mathrm{P}(\mathrm{O})(\mathrm{OH})_{2}$	74
4	$(\mathrm{PhO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{OH}$	28

The reaction was carried out at room temperature for 2 h .
${ }^{\text {a }}$ The yield was determined by ${ }^{1} \mathrm{H}$ NMR of the crude product.

Fig. 3. Speculated hydrogen-bonding between 1 and $(\mathrm{PhO}) \mathrm{P}(\mathrm{O})(\mathrm{OH})_{2}$.
phoric acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Generally, $(\mathrm{PhO}) \mathrm{P}(\mathrm{O})(\mathrm{OH})_{2}$ catalyzed the Diels-Alder reaction more than $(\mathrm{PhO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{OH}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$.

4. Conclusion

The Brønsted acid-catalyzed Diels-Alder reaction was examined. Phosphoric acids were effective Brønsted acids for the Diels-Alder reaction of cyclohexadienones, although the activ-
ity of phosphoric acids was moderate for the other dienophiles (cinnamaldehyde and benzoquinone). This can be understandable by the terms of the Lewis basisity of the dienophiles [22]. In the Brønsted acid-catalyzed Diels-Alder reaction, the diastereoselectivity was also improved. When the acid-labile substrate was used, the acidity of the phosphoric acid was controlled by the combination with base $[2 \mathrm{~d}, 4 \mathrm{~d}, 4 \mathrm{~g}]$. Although the activity of $\mathrm{H}_{3} \mathrm{PO}_{4}$ depended on the substrate, $(\mathrm{PhO}) \mathrm{P}(\mathrm{O})(\mathrm{OH})_{2}$ accelerated the Diels-Alder reaction more than $(\mathrm{PhO})_{2} \mathrm{POH}$. The activation of the Diels-Alder reaction by the internal hydrogenbonding of the biaryl diol [2b,12], the bis-ammonium salts of mono- N-alkylated 1,2-diamino-1,2-ethane [23a,b], and α hydroxyenone [23c] have been reported. This report also suggest that $(\mathrm{PhO}) \mathrm{P}(\mathrm{O})(\mathrm{OH})_{2}$ is activated by the internal hydrogenbonding of the adjacent hydroxy group (Fig. 3).

Acknowledgements

NMR, MS, and elemental analysis measurements were made using JEOL JMN-LA500, JEOL SX-102A, and Perkin-Elmer 2400 CHN instruments, respectively, at the Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University. We thank Dr. Yoshikazu Hiraga, Graduate School of Science, Hiroshima University, for NMR measurements (JEOL JMN-LA500) at Hiroshima Prefectural Institute of Science and Technology. We thank Dr. Satoshi Kojima, Graduate School of Science, Hiroshima University, for the crystallographic analysis and for beneficial discussions.

References

[1] For reviews;
(a) P.R. Schreiner, Chem. Soc. Rev. 32 (2003) 289;
(b) P.M. Pihko, Angew. Chem. Int. Ed. 43 (2004) 2062;
(c) J. Seayad, B. List, Org. Biomol. Chem. 3 (2005) 719;
(d) M.S. Taylor, E.N. Jacobsen, Angew. Chem. Int. Ed. 45 (2006) 1520.
[2] hetero-Diels-Alder reaction;
(a) S. Rajaram, M.S. Sigman, Org. Lett. 8 (2005) 5473;
(b) A.K. Unni, N. Takenaka, H. Yamamoto, V.H. Rawal, J. Am. Chem. Soc. 127 (2005) 1336;
(c) T. Tonoi, K. Mikami, Tetrahedron Lett. 46 (2005) 6355;
(d) J. Itoh, K. Fuchibe, T. Akiyama, Angew. Chem. Int. Ed. 45 (2006) 4796;
(e) H. Liu, L.-F. Cun, A.-Q. Mi, Y.-Z. Jiang, L.-Z. Gong, Org. Lett. 8 (2006) 6023;
(f) T. Akiyama, H. Morita, K. Fuchibe, J. Am. Chem. Soc. 128 (2006) 13070, and references therein.
[3] Fridel-Crafts type reaction;
(a) J. Seayad, A.M. Seayad, B. List, J. Am. Chem. Soc. 128 (2006) 1086;
(b) E.M. Fleming, T. McCabe, S.J. Connon, Tetrahedron Lett. 47 (2006) 7037;
(c) M. Terada, K. Sorimachi, J. Am. Chem. Soc. 129 (2007) 292, and references therein.
[4] Transfer hydrogenation;
(a) R.I. Storer, D.E. Carrera, Y. Ni, D.W.C. MacMillan, J. Am. Soc. Chem. 128 (2006) 84;
(b) D. Menche, J. Hassfeld, J. Li, G. Menche, A. Ritter, S. Rudolph, Org. Lett. 8 (2006) 741;
(c) M. Rueping, A.P. Antonchick, T. Theissmann, Angew. Chem. Int. Ed. 45 (2006) 3683;
(d) S. Mayer, B. List, Angew. Chem. Int. Ed. 45 (2006) 4193;
(e) M. Rueping, A.P. Antonchick, T. Theissmann, Angew. Chem. Int. Ed. 45 (2006) 6751;
(f) S. Hoffmann, M. Nicoletti, B. List, J. Am. Chem. Soc. 128 (2006) 13074;
(g) N.J.A. Martin, B. List, J. Am. Chem. Soc. 128 (2006) 13368, and references therein.
[5] Aldol reaction;
(a) N. Momiyama, H. Yamamoto, J. Am. Chem. Soc. 127 (2005) 1080;
(b) V.B. Gondi, M. Gravel, V.H. Rawal, Org. Lett. 7 (2005) 5657;
(c) J.D. McGilvra, A.K. Unni, K. Modi, V.H. Rawal, Angew. Chem. Int. Ed. 45 (2006) 6130;
(d) R. Villano, M.R. Acocella, A. Massa, L. Palombi, A. Scettri, Tetrahedron Lett. 48 (2007) 891.
[6] Morita-Baylis-Hillman reaction;
(a) N.T. McDougal, S.E. Schaus, J. Am. Chem. Soc. 125 (2003) 12094;
(b) D.J. Maher, S.J. Connon, Tetrahedron Lett. 45 (2004) 1301;
(c) J. Wang, H. Li, X. Yu, L. Zu, W. Wang, Org. Lett. 7 (2005) 4293;
(d) Y. Sohtome, A. Tanatani, Y. Hashimoto, K. Nagasawa, Tetrahedron Lett. 45 (2004) 5589;
(e) K. Matsui, S. Takizawa, H. Sasai, J. Am. Chem. Soc. 127 (2005) 3680;
(f) S.A. Rodgen, S.E. Schaus, Angew. Chem. Int. Ed. 45 (2006) 4929.
[7] Mannich-type reaction;
(a) T. Akiyama, H. Morita, J. Itoh, K. Fuchibe, Org. Lett. 7 (2005) 2583;
(b) D. Uraguchi, K. Sorimachi, M. Terada, J. Am. Chem. Soc. 127 (2005) 9360;
(c) G.B. Rowland, H. Zhang, E.B. Rowland, S. Chennamadhavuni, Y. Wang, J.C. Antilla, J. Am. Chem. Soc. 127 (2005) 15696;
(d) M. Terada, K. Machioka, K. Sorimachi, Angew. Chem. Int. Ed. 45 (2006) 2254;
(e) M. Rueping, E. Sugiono, C. Azap, Angew. Chem. Int. Ed. 45 (2006) 2617;
(f) A. Hasegawa, Y. Naganawa, M. Fushimi, K. Ishihara, H. Yamamoto, Org. Lett. 8 (2006) 3175;
(g) M. Rueping, C. Azap, Angew. Chem. Int. Ed. 45 (2006) 7832;
(h) X.-H. Chen, X.-Y. Xu, H. Liu, L.-F. Cun, L.-Z. Gong, J. Am. Chem. Soc. 128 (2006) 14802, and references therein.
[8] Photocycloaddition;
(a) K. Tanaka, T. Fujiwara, Org. Lett. 7 (2005) 1501;
(b) B. Gerard, S. Sangji, D.J. O'Leary, J.A. Porco Jr., J. Am. Chem. Soc. 128 (2006) 7754.
[9] Michael type reaction;
(a) T. Okino, Y. Hoashi, Y. Takemoto, J. Am. Chem. Soc. 125 (2003) 12672;
(b) T. Okino, Y. Hoashi, T. Furukawa, X. Xu, Y. Takemoto, J. Am. Chem. Soc. 127 (2005) 119;
(c) Z.M. Jászay, G. Németh, T.S. Pham, I. Petneházy, A. Grünb, L. Tőke, Tetrahedron: Asymmetry 16 (2005) 3837;
(d) Y. Hoashi, T. Okino, Y. Takemoto, Angew. Chem. Int. Ed. 44 (2005) 4032;
(e) J. Wang, H. Li, W. Duan, L. Zu, W. Wang, Org. Lett. 7 (2005) 4713;
(f) C.-L. Cao, M.-C. Ye, X.-L. Sun, Y. Tang, Org. Lett. 8 (2006) 2901;
(g) H. Huang, E.N. Jacobsen, J. Am. Chem. Soc. 128 (2006) 7170;
(h) Y.-J. Cao, Y.-Y. Lai, X. Wang, Y.-J. Li, W.-J. Xiao, Tetrahedron Lett. 48 (2007) 21.
[10] (a) T.R. Kelly, P. Meghani, V.S. Ekkundi, Tetrahedron Lett. 31 (1990) 3381;
(b) T. Schuster, M. Bauch, G. Dürner, M.W. Göbel, Org. Lett. 2 (2000) 179;
(c) T. Schuster, M. Kurz, M.W. Göbel, J. Org. Chem. 65 (2000) 1697;
(d) D.C. Braddock, I.D. MacGilp, B.G. Perry, Synlett (2003) 1121;
(e) D. Nakashima, H. Yamamoto, Org. Lett. 7 (2005) 1251.
[11] (a) S.A. Kozmin, V.H. Rawal, J. Org. Chem. 62 (1997) 5252;
(b) S.A. Kozmin, V.H. Rawal, J. Am. Chem. Soc. 119 (1997) 7165;
(c) S.A. Kozmin, V.H. Rawal, J. Am. Chem. Soc. 120 (1998) 13523;
(d) S.A. Kozmin, J.M. Janey, V.H. Rawal, J. Org. Chem. 64 (1999) 3039;
(e) S.A. Kozmin, M.T. Green, V.H. Rawal, J. Org. Chem. 64 (1999) 8045;
(f) S.A. Kozmin, V.H. Rawal, J. Org. Chem. 121 (1999) 9562.
[12] A.N. Thadani, A.R. Stankovic, V.H. Rawal, PNAS 101 (2004) 5846.
[13] D. Nakashima, H. Yamamoto, J. Am. Chem. Soc. 128 (2006) 9626.
[14] (a) R. Takagi, W. Miyanaga, Y. Tamura, S. Kojima, K. Ohkata, Heterocycles 60 (2003) 785;
(b) K. Ohkata, Y. Tamura, B.B. Shetuni, R. Takagi, W. Miyanaga, S. Kojima, L.A. Paquette, J. Am. Chem. Soc. 126 (2004) 16783.
[15] Z. Otwinowsky, W. Minor, DENZO and SCALEPACK: Processing of Xray Diffraction Data Collected in Oscillation Mode, Methods Enzymol. (1997) 276. (The program is available from Mac Science Co.).
[16] TeXsan: Single-Crystal Analysis Software, version 1.9, Molecular Structure Corporation, The Woodlands, Texas 77381, USA, 1998. The program is available from Mac Science Co.
[17] $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ (10 eq): 40% conversion yield, $\mathbf{2 : 3}=94: 6 ; 3,3^{\prime}$ bis(trifluoromethyl)urea (0.2 eq ; not completely dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): 9% conversion yield, $\mathbf{2}: \mathbf{3}=92: 8 ; 3,3^{\prime}$-bis(trifluoromethyl)thiourea (0.2 eq ; not completely dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): 14% conversion yield, $\mathbf{2 : 3}=93: 7$.
[18] Crystallographic data of 6 have been deposited with the Cambridge crystallographic Data Center: CCDC-656085. monoclinic system, space group P21/c (\#14), $a=13.8630(3) \AA, b=10.4920(2) \AA, c=14.6750$ (3) $\AA, \quad V=2129.98(8) \AA^{3}, \quad Z=4, \quad P_{\text {calc }}=1.274 \mathrm{~g} \mathrm{~cm}^{-3}, \quad F(000)=880.000$, $R=0.116\left(R_{\mathrm{W}}=0.243\right)$ for 4333 reflections out of 4901 collected (262 parameters) with $\mathrm{I}>3(\mathrm{I})$. Goodness of fit $=1.11$.
[19] Although Diels-Alder reaction of cinnamaldehyde with cyclopentadiene catalyzed by $(\mathrm{PhO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{OH}-\mathrm{PhNHMe}$ was also examined [cf. T. Kano, Y. Tanaka, K. Maruoka, Org. Lett. 8 (2006) 2687.], (PhO) ${ }_{2} \mathrm{P}(\mathrm{O}) \mathrm{OH}-\mathrm{PhNHMe}$ was not effective for the Diels-Alder reaction as an amine-salt catalyst.
[20] K. Ishihara, H. Kurihara, M. Matsumoto, H. Yamamoto, J. Am. Chem. Soc. 120 (1998) 6920.
[21] C. Liu, D.J. Burnell, J. Org. Chem. 62 (1997) 3683.
[22] (a) K. Mikami, M. Terada, T. Nakai, J. Org. Chem. 56 (1991) 5456;
(b) J.-X. Chen, K. Sakamoto, A. Orita, J. Otera, J. Org. Chem. 63 (1998) 9739;
(c) N. Asao, T. Asano, Y. Yamamoto, Angew. Chem., Int. Ed. 40 (2001) 3206.
[23] (a) K.H. Kim, S. Lee, D.-W. Lee, D.-H. Ko, D.-C. Ha, Tetrahedron Lett. 46 (2005) 5991;
(b) K. Ishihara, K. Nakano, J. Am. Chem. Soc. 127 (2005) 10504;
(c) C. Palomo, M. Oiarbide, J.M. García, A. González, A. Lecumberri, A. Linden, J. Am. Chem. Soc. 124 (2002) 10288.

[^0]: * Corresponding author. Tel.: +8182424 7434; fax: +8182424 0727.

 E-mail address: rtakagi@hiroshima-u.ac.jp (R. Takagi).

[^1]: Scheme 1. Diels-Alder reaction of $\mathbf{1}$ with cyclopentadiene.

[^2]: The reaction was carried out at room temperature.
 ${ }^{\text {a }}$ The yield was determined by ${ }^{1} \mathrm{H}$ NMR of the crude product.
 ${ }^{\text {b }}$ The $(\mathrm{PhO}) \mathrm{P}(\mathrm{O})(\mathrm{OH})_{2}$-catalyzed tautomerization product 10 was obtained in 26% yield.

